Optimal Dynamic Asset Allocation with Capital Gains Taxes and Stochastic Volatility

Yuan-Hung Hsuku∗
National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan

This is one of the nine accepted papers among 143 papers that were submitted to the solicitation by Asia-Pacific Journal of Financial Studies in the special “Call-for-Papers” event in 2007

Abstract

This paper investigates the effect of capital gains tax on investors’ optimal dynamic consumption and portfolio choice when there is predictable variation in return volatility. For conservative investors who are under the leverage effect of a capital gains tax, we assume a negative after-tax leverage effect on the intertemporal hedging demand caused by pure changes in stochastic volatility. As a result, negative correlation between the unexpected return on the stock and its stochastic volatility is expected. Moreover, in a bad market accompanied by high volatility under the leverage effect, a conservative investor will be subject to a negative vega effect of the tax option on the intertemporal hedging demand coming from pure changes in stochastic volatility.

Keywords: Capital Gains Tax; Portfolio Choice; Stochastic Volatility; Intertemporal Model; Intertemporal Hedging Demand

* Corresponding Author. Address: Department of Financial Operations, National Kaohsiung First University of Science and Technology, 2, Juoyue Rd., Nantz District, Kaohsiung 811, Taiwan, (R.O.C.); E-mail: hsuku@ccms.nkfust.edu.tw; Tel: 886-7-6011000 Ext. 3123; Fax: 886-7-6011039.
1. Introduction

In the recent years, there has been some research exploring the optimal dynamic asset allocation strategies with various risks, such as volatility risk, interest risk, and inflation risk. Merton (1971) was the first to consider the effect of a stochastic investment opportunity set in the analysis of optimal asset allocation strategies for long-horizon investors. However, a vast amount of empirical literature in the 1990’s has demonstrated that asset return is predictable to a certain degree. Bollerslev, Chou and Kroner (1992), Campbell, Lo and MacKinlay (1997), and Campbell, Lettau, Malkiel and Xu (2001) have shown that stock market return volatility is not constant over time. Since then, academic economists have emerged studying the effects of return predictability on asset allocation strategies. Brennan, Schwartz and Lagnado (1997) and some of the recent research for this area explores models which examine the optimal dynamic asset allocation strategy when the state variable follows stochastic processes. However, there has been a very limited literature on the capital gains taxes which apply to the optimal dynamic asset allocation strategies with time-varying volatility risk.

While there are substantial differences across countries in both the level and structure of capital income taxes, investors in many countries are generally subject to a substantial amount of taxes. In general, taxes on capital gains are viewed favorably, as many investors believe that such taxes contribute to more consumption and investment. Indeed, taxes play an important role in the decision-making process of individuals concerning their consumption and investment plans. Also, taxes on returns of any financial assets alter the benefits of saving for future consumption and thus affects the trade-off between current consumption and investment (Dammon, Spatt and Zhang, 2001).

The purpose of this paper is to investigate the effect of taxation on capital gains on the optimal dynamic consumption and portfolio choice with stochastic volatility. To this end, we apply the real option in the tax law. Computing the optimal consumption and portfolio policy of an investor subject to capital gains taxes is a challenging task. Our research contributes to the literature on optimal asset allocation by exploring precisely how capital gains taxes affect asset allocation with stochastic volatility.

If asset returns or volatility are time-varying, this implies that investment oppor-
tunities are time-varying, too. Merton (1971, 1973) shows that when investment opportunities are time-varying, dynamic hedging is necessary for forward-looking investors. Multi-period or long-horizon investors are concerned not only with expected returns and risk today, but with ways in which expected returns and risk may change over time. Dynamic asset allocation strategies for multi-period or long-horizon investors differ from those of single-period investors because the former demand risky assets not only for their risk premia, but also for their hedging ability against adverse changes in future investment opportunities. Merton (1969, 1971, 1973) shows that if investment opportunities vary over time, then long-horizon investors generally are cautious against potential market shocks that may deteriorate their investment opportunities, instead of only focusing on increasing their wealth. Taking a precaution, they may seek to hedge their exposures to market risks, and this creates intertemporal hedging demand for financial assets (Campbell, 2000).

Recently, there has been some literature that explores and analyzes optimal dynamic portfolio choice with volatility risk (Liu, 2000, 2001; Chacko and Viceira, 2005). Such studies are supposed to promote the optimal consumption and portfolio choice of long-horizon investors when there is predictable variation in stock market return volatility. However, there has been no research to explore both the effects of capital gains taxes and stochastic volatility on optimal portfolio choice. In addition, the tax laws in many countries usually create a situation where the taxpayer's payoff from a course of action resembles the payoff from writing a call option to the government. As a result of the call-like nature of the investor's tax pay-off function, investors have an incentive to reduce their expected tax burdens. This incentive will result in the adjustment of optimal dynamic asset allocation strategies and the consumption rule. In addition, other things equal, the capital gains tax system generally imposes a high burden on more volatile investments than on less volatile investments with the same expected return. In other words, the tax system also imposes a higher burden when the market is more volatile. Investors can reduce their expected tax burdens by reducing the volatility of their capital gains. One way to reduce capital gains volatility is also through intertemporal hedging on the financial assets, especially when facing an environment with time-varying volatility. We find that multi-period investors value assets not only for their short-term risk-return characteristics, but also for their ability to hedge consumption against adverse shifts in future “after-tax” investment opportunities. Thus these investors have an extra demand for risky assets
that reflects after-tax intertemporal hedging.

In this generalized intertemporal model under the stochastic environment, Merton’s approach (1971, 1973) could not be used to derive a closed-form solution by solving a nonlinear differential equation on the intertemporal hedging portfolio. Recently however, some of the literature has begun to work on it, such as the approximate analytical solutions developed by Campbell and Viceira (2001), Kogan and Uppal (2001), and Chacko and Viceira (2005). These solutions are based on perturbations of known exact solutions. They offer analytical insights into investor behavior in models that fall outside the still limited class that can be solved exactly (Campbell, 2000). In this paper, we use perturbation methods to get linear approximate solutions. We mainly derived the explicit solution on a log-linear expansion of the consumption-wealth ratio around its unconditional mean provided by Campbell (1993), Campbell and Viceira (1999, 2001, 2002) and Chacko and Viceira (2005).

This paper is organized as follows. Section II describes the model used and environment assumed in this paper. Section III develops the model of optimal consumption policy and dynamic asset allocation strategies with time-varying volatility and capital gains taxes. Section IV provides analyses of the model results and how capital gains taxes affect asset allocation with stochastic volatility. Finally, conclusions are given in Section V.

2. The Model

2.1 Investment Opportunity Set

In this paper, we assume that the investor invests wealth in tradable assets only. There are two tradable assets available for trading in the economy. One of the assets is a riskless money market fund, denoted by B, with a constant interest rate of r. Its instantaneous return is

$$\frac{dB}{B} = r dt.$$ \hspace{1cm} (1)

The short rate is assumed to be constant and tax-free in order to focus on the sto-
Stochastic volatility of the risky asset. The second tradable asset is a taxable risky stock. \(S_t \) denotes the price of the risky financial asset at time \(t \); its instantaneous total return dynamics are given by

\[
\frac{dS_t}{S_t} = \mu \ dt + \sqrt{V_t} \, dZ_t,
\]

(2)

where \(\mu \) is the instantaneous expected rate of return on the risky stock; and \(\sqrt{V_t} \) is the time-varying instantaneous standard deviation of the return on the risky asset. We denote stochastic variables with a subscript “\(t \)”; and let the conditional variance of the risky stock vary stochastically over time. From the following setting, the investment opportunity is time-varying. We assume that the instantaneous variance process is

\[
dV_t = \kappa (\theta - V_t) \, dt + \sigma \sqrt{V_t} \, dZ_t,
\]

(3)

where the parameter \(\theta > 0 \), which describes the long-term mean of the variance, \(\kappa \in (0, 1) \) is the reversion parameter of the instantaneous variance process, i.e. this parameter describes the degree of mean reversion. \(dZ_s \) and \(dZ_v \) are two Wiener processes with constant correlation \(\rho \). We assume that the stock returns are correlated with changes in volatility with instantaneous correlation \(\rho \), which may be assumed to be negative to capture the leverage effect or the asymmetric effect (Glosten et al., 1993). The negative correlation assumption with the mean-reversion on stock returns volatility can capture two of the most important features discussed in the empirical literature on the equity market.

Each monetary unit of stock sold at some time \(t \) is subject to the payment of an amount of tax computed according to the relative tax basis observed at the prior time. This paper assumes that the tax laws create a situation where the tax payer’s payoff from a course of action resembles the payoff from holding a call option. As a result of the call-like nature of the taxpayer’s tax function, and following Sircar and Papanicolaou (1999) and Liu and Pan (2003) and under the above setting, we assume the value of the real tax option \((T_t = \tau(S_t, V_t)) \) which is the function \((\tau) \) on the prices of the stock \((S_t) \) and on the volatility of stock returns \((V_t) \) at time \(t \), and will have the fol-
Optimal Dynamic Asset Allocation with Capital Gains Taxes and Stochastic Volatility

Following price dynamics:

\[dT_t = \left(\mu - r \right) S_t \tau_t + \lambda \tau_t \sigma V_t + \tau_t dT + \sqrt{\tau_t S_t \sigma} dZ_t + \sigma \sqrt{\tau_t \sigma} dZ_t, \]

(4)

where the \(\lambda \) determines the stochastic volatility risk premium of the real tax option, and \(0 < \tau, < 1 \) and \(\tau > 0 \) are measures of the real tax option’s price sensitivity to small changes in the underlying stock price and volatility, respectively. They measure the sensitivity of the real tax call option value to infinitesimal changes in the stock price and volatility, respectively. Specifically,

\[\tau = \frac{\partial \tau(s, V)}{\partial s} ; \quad \tau = \frac{\partial \tau(s, V)}{\partial V}. \]

The real tax option written on the stock with the non-linear payoff structure

\[r(S_t, V_t) = (S_t - K)^+ \] for some strike price \(K > 0 \), at \(t < \delta \), and the strike price \(K \), in fact, is the investor’s tax basis for the risky asset observed at the prior time. Thus, the dynamics of the after-tax return on the risky stock \(S^* \) would be

\[dS^* = [\mu S_t - (\mu - r) S_t \tau_t - \lambda \sigma \tau_t V_t - r T] dt + \left[V_t S_t - \sqrt{V_t S_t \tau_t} \right] dZ_t - \sigma \sqrt{V_t \tau_t} dZ_t. \]

(5)

2.2 Preferences

We assume that the investor’s preference is recursive and of the form described by Duffie and Epstein (1992). Recursive utility is a generalization of the standard and time-separable power utility function that separates the elasticity of intertemporal substitution of consumption from the relative risk aversion (Duffie and Epstein, 1992; Chacko and Viceira, 2005). This means that the power utility is just a special case of the recursive utility function when the elasticity of the intertemporal substitution is just the inverse of the relative risk aversion coefficient.

\[J = E \left[\int_0^\infty f(C_{\delta}, J_{\delta}) d\delta \right], \]

(6)

where \(f(C_{\delta}, J_{\delta}) \) is a normalized aggregator of investor’s current consumption \((C_{\delta}) \).
and utility has the following form:

\[
f(C, J) = \beta(1 - \frac{1}{\varphi})(1 - \gamma)J \left[\frac{C}{(1 - \gamma)J^{\gamma}} \right]^{\frac{1}{\varphi}} - 1, \tag{7}
\]

where \(\gamma \) is the coefficient of relative risk aversion, \(\beta \) is the rate of time preference and \(\varphi \) is the elasticity of intertemporal substitution; they are all larger than zero.

The investor's objective is to maximize her expected lifetime utility by choosing consumption and the proportions of her wealth to invest in the two tradable assets subject to the following intertemporal budget constraint,

\[
dW_t = \left[n_r \left(\mu \frac{S_r}{S_t} - (\mu - r) \frac{S_r}{S_t} \tau_r - \lambda \frac{\tau_r}{S_t} V - rT_t - r \right) W_t + rW_t - C_t \right] dt
\]

\[
+ n_r \left(\sqrt{\tau_r} \frac{S_r}{S_t} - \sqrt{\tau_r} \frac{S_r}{S_t} \right) dZ_t W_t - n_r \left(\sigma \sqrt{\tau_r} \frac{S_r}{S_t} \right) dZ_t W_t, \tag{8}
\]

where \(W_t \) represents the investor's total wealth, while \(n_r \) are the fractions of the investor's financial wealth allocated to the risky stock at time \(t \), and \(C_t \) represents the investor's instantaneous consumption.

3. Optimal Consumption Policy and Dynamic Asset Allocation Strategies with Time-Varying Volatility and Capital Gains Taxes

The main objection of this paper is to explore the optimal dynamic asset allocation strategies with time-varying volatility and capital gains taxes. Instead of a single period result, we also want to explore the optimal intertemporal consumption with after-tax stochastic investment opportunity set induced by the stochastic volatility.

3.1 A Special Case with Unit Elasticity of Intertemporal Substitution of Consumption

The value function of the problem \((J) \) is to maximize the investor's expected life-
time utility. The principle of optimality leads to the following Bellman equation for
the utility function. Under the above setting, the Bellman equation will satisfy

\[
0 = \sup_{\pi, \xi} \left(f(C_t, J_t) + J_w \left[n_r \left(\mu \frac{S_s}{S_t} - (\mu - r) \frac{S_s}{S_t} \right) - \lambda \sigma \frac{\tau_s}{S_t} V_t - r T - r \right] W_t + r W_t - C_t \right)
+ J_v \left[\kappa(\theta - V_t) \right] + \frac{1}{2} J_{vv} \left[n^2_v \left(\frac{S_s}{S_t} \right) \right] V_t + n^2_v \left(\frac{\tau_s}{S_t} \right) V^2_t - 2 n^2_v \left(\frac{S_s}{S_t} \right) \left(\sigma \frac{\tau_s}{S_t} \right) \rho W_t^2
+ \frac{1}{2} J_{vv} \sigma^2 V_t + J_{vw} W_t \left[n_r \left(\frac{S_s}{S_t} \right) \right] V_t \sigma^2 - n_r \left(\frac{\tau_s}{S_t} \right) \sigma^2 V_t \right],
\]

(9)

where \(J_w, J_v \) denote the derivatives of \(J \) with respect to wealth, \(W \), and
stochastic volatility, \(V_t \), respectively. We will use the similar notation for higher deriva-
tives as well. We also note that \(\rho \) is the instantaneous correlation between the un-
expected return on the stock and its stochastic volatility.

The first-order conditions for the equation (9) are

\[
C_t = J_w \frac{W_t}{W_t S_t} \beta^\gamma (1 - \gamma)^{\frac{\gamma}{\gamma + 1}},
\]

(10)

\[
n_r = - \frac{J_w}{J_{vv} W_t \left[S_s^2 + S_t^2 r_s^2 - 2 S_s \tau_s - \sigma^2 r_s^2 - 2 \rho (\rho S_s - \rho S_t r_s - \sigma r_s) \right] V_t} \left[(\mu - r) S_s (1 - \tau_s) - \lambda \sigma r_s V_t \right] S_t^r
- \frac{J_{vv}}{J_{vv} W_t \left[S_s^2 + S_t^2 r_s^2 - 2 S_s \tau_s - \sigma^2 r_s^2 - 2 \rho (\rho S_s - \rho S_t r_s - \sigma r_s) \right] V_t} \sigma (\rho S_s - \rho S_t r_s - \sigma r_s) S_t^r.
\]

(11)

The optimal dynamic asset allocation strategy has two major components. The first
term is the mean-variance portfolio weight. This is for an investor who only invests in
a single period horizon or under constant investment opportunity set, the myopic de-
mand. The second term of the optimal dynamic portfolio allocation is the intertempo-
ral hedging demand that characterizes demand arising from the desire to hedge
against changes in the after-tax investment opportunity set induced by the stochastic
volatility. This term is determined by the instantaneous rate of changes in relation to
the value function.

We will discuss this in more detail later, because the first-order conditions for our
problem are not explicit solutions unless we know the complicated indirect utility
function. Substituting the first-order solutions back into the Bellman equation, we get

\[
0 = f(C(J), J) - J_w C(J) + J_w r W_t + J_r \left[k(\theta - V_t)\right] + \frac{1}{2} J_{vv} \sigma^2 V_t \nonumber \\
\frac{1}{2} J_{vv} \sigma^2 \left(\rho S_t - \rho S_{t-1} - \sigma V_t\right)^2 V_t \nonumber \\
- \frac{1}{2} J_{vv} \sigma^2 \left(\rho S_t - \rho S_{t-1} - \sigma V_t\right)^2 \nonumber \\
J_{vv} \frac{(\mu - r)S_t(1 - \tau_v) - \lambda \sigma \tau_v V_t)}{S_t^2 + S_{t-1}^2 \tau_v^2 - 2S_t^2 \tau_v + \sigma^2 \tau_v^2 - 2 \rho (\sigma S_t \tau_v - \tau_v \sigma S_{t-1})V_t} \nonumber \\
\frac{(\mu - r)S_t(1 - \tau_v) - \lambda \sigma \tau_v V_t)}{S_t^2 + S_{t-1}^2 \tau_v^2 - 2S_t^2 \tau_v + \sigma^2 \tau_v^2 - 2 \rho (\sigma S_t \tau_v - \tau_v \sigma S_{t-1})} V_t \nonumber \\
(12)
\]

We conjecture that there exists a solution of the functional form

\[
J(W_t, V_t) = I(V_t) \frac{W^{1-\gamma}}{1-\gamma} \nonumber \\
\text{when } \varphi = 1, \text{ and substitute it into equation (12), then the ordinary differential equation will have a solution of the form } I = \exp \left(Q_0 + Q_1 V_t + Q_2 \log V_t\right). \text{ Rearranging that equation, we have three equations for } Q_1, Q_2 \text{ and } Q_0 \text{ after collecting terms in } \frac{1}{V_t}, V_t \text{ and 1. We provide the full details in Appendix.}
\]

We are now able to obtain the indirect utility function and the optimal consumption-wealth ratio and dynamic asset allocation strategy with time-varying volatility and capital gains tax when \(\varphi = 1\). The indirect utility function is

\[
J(W_t, V_t) = I(V_t) \frac{W^{1-\gamma}}{1-\gamma} = \exp \left(Q_0 + Q_1 V_t + Q_2 \log V_t\right) \frac{W^{1-\gamma}}{1-\gamma}, \quad (13)
\]

The investor's optimal consumption-wealth ratio and the optimal dynamic asset allocation strategy are

\[
\frac{C_t}{W_t} = \beta, \quad (14)
\]

\[
n_t = \frac{1}{\gamma} \left\{ [(\mu - r)S_t(1 - \tau_v) - \lambda \sigma \tau_v V_t] S_t^2 \right\} \nonumber \\
\frac{1}{\gamma} \left\{ (Q_1 + Q_2 \frac{1}{V_t}) \right\} S_t^2 + S_{t-1}^2 \tau_v^2 - 2S_t^2 \tau_v + \sigma^2 \tau_v^2 - 2 \rho (\sigma S_t \tau_v - \tau_v \sigma S_{t-1}) \nonumber \\
\frac{\sigma (\rho S_t - \rho S_{t-1} - \sigma V_t)}{S_t^2 + S_{t-1}^2 \tau_v^2 - 2S_t^2 \tau_v + \sigma^2 \tau_v^2 - 2 \rho (\sigma S_t \tau_v - \tau_v \sigma S_{t-1})} \nonumber \\
(15)
\]
However, for the time being, we defer solving this model since this solution is merely a special case of our model setting when $\phi = 1$. In the next section, we will use perturbation methods to find the general solution to our model.

3.2 Approximate Closed-Form Solution by Perturbation Methods

The basic idea behind the use of perturbation methods is that of formulating a general problem, on the condition that we find a particular case that has a known solution, and then using that particular case and its solution as a starting point for computing approximate solutions to nearby problems. In many financial economic models, determining the unknown function plays a key role in economic analysis under the assumption of a given functional form. However, the more generalized the model is, the more difficult it is to find a closed-form solution, especially in the case of an intertemporal consumption and portfolio choice problem with stochastic nonlinear partial differential equations. In spite of this, this situation has very recently begun to change as a result of several related developments. One of these developments has involved the use of perturbation methods in some special cases where solutions are derived for computing approximate solutions that will help make economic analysis more explicit. These methods offer analytical insights into investor behavior in models that fall outside the still-limited class that can be solved exactly (Campbell, 2000).

Judd and Guu (1997, 2000), Kogan and Uppal (2001), Campbell and Viceira (1999, 2001, 2002), and Chacko and Viceira (2005) etc. have used this approach to solve dynamic economic or financial models. In the remainder of this paper, we will apply perturbation methods to solve our model. In the context of our problem, the insight we obtain is that the solution for the recursive utility function when $\phi = 1$ provides a convenient starting point for performing the expansion. We apply the $\phi = 1$ in the previous section as our starting point and compute our model around this solution. Without the restriction of $\phi = 1$, the Bellman equation can be expressed as the following equation by substituting equation (10) into equation (12) and conjecturing there exists a solution of the functional form $J(W, V) = I(V) \frac{W^{\gamma}}{1-\gamma}$:

$$0 = -\frac{\beta^\sigma}{1-\phi} l^{1-\gamma} + \frac{\phi}{1-\phi} \beta l + r + I_r \left(1 - \frac{1}{1-\gamma}\right) \gamma \sigma (\theta - V)^\gamma$$
To simplify, we can make the transformation \(I(V') = \Phi(V') \), and give the following non-homogeneous ordinary differential equation,

\[
0 = -\beta \Phi^{-1} + (1-\phi)r - \frac{\Phi}{\Phi} \kappa(\theta - V') - \frac{1}{2} \sigma^2 V' \left(\frac{\gamma-1}{1-\phi} \left(\frac{\Phi}{\Phi} \right)^2 + \frac{\Phi}{\Phi} \right) + \frac{1}{2} I(V') \left(\frac{\sigma^2}{S_t^2 + \sigma^2 \tau_t^2} \right) - \frac{1}{2} \sigma^2 \left(\rho S_t^2 - \rho S_t \tau_t - \sigma \tau_t \right) \right] V',
\]

\[
\left(\frac{\gamma-1}{1-\phi} \left(\frac{\Phi}{\Phi} \right)^2 + \frac{\Phi}{\Phi} \right) \left(\frac{\sigma^2}{S_t^2 + \sigma^2 \tau_t^2} \right) - \frac{1}{2} \sigma^2 \left(\rho S_t^2 - \rho S_t \tau_t - \sigma \tau_t \right) \right] V'.
\]

(17)

Unfortunately, the above equation cannot be computed in closed form. Our approach is to obtain an asymptotic approximation to equation (17), where the expansion is by taking a log-linear expansion of the consumption-wealth ratio around its unconditional mean as shown in the papers of Campbell (1993), Campbell and Viceira (1999, 2001, 2002) and Chacko and Viceira (2005). From the transformation \(I(V') = \), \(\Phi(V') \), we can get the envelope condition of the equation (10),

\[
\frac{C_t}{W_t} = \beta \Phi^{-1} = \exp \left\{ \log \left(\frac{C_t}{W_t} \right) \right\} = \exp \{c_t - w_t\}.
\]

Then, using a first-order Taylor expansion of \(\exp \{c_t - w_t\} \) around the expectation of \((c_t - w_t) \), we can write
Substituting equation (19) into the equation (17) and guessing this equation has a solution of the form \(\Phi(V_t) = \exp\left(\hat{Q}_t + \hat{Q}_1 V_t + \hat{Q}_2 \log V_t\right) \), and from this guessed solution, equation (18) can find that

\[
(c_i - w_i) = \log \{\exp(\hat{Q}_2 + \hat{Q}_1 V_t + \hat{Q}_2 \log V_t)\}^{-1}
\]

\[
= \phi \log \beta - \hat{Q}_2 - \hat{Q}_1 V_t - \hat{Q}_2 \log V_t.
\]

(20)

As such, we can express equation (17) as

\[
0 = -\left\{\phi_1 + \phi_2 \left[\phi \log \beta - \hat{Q}_2 - \hat{Q}_1 V_t - \hat{Q}_2 \left(\log \theta + \frac{1}{\theta} V_t - 1\right)\right]\right\} + \phi \beta + (1 - \phi)r
\]

\[
- \left(\hat{Q}_2 + \hat{Q}_1 \frac{1}{V_t}\right)\kappa(\theta - V_t) + (1 - \phi)\left[\frac{1}{2 \gamma} + \frac{1}{S^2 + \gamma S^2 r^2 + \sigma^2 S^2 r^2 - 2 \rho \sigma \kappa^2 r^2 - 2 \rho \sigma S r^2 - \rho \sigma S \kappa^2 r^2 - 2 \rho \sigma S \kappa^2 r^2} V_t\right]
\]

\[
+ \frac{1}{2 \gamma} (1 - \gamma) \left(\hat{Q}_2 + \hat{Q}_1 \frac{1}{V_t}\right)^2
\]

\[
\frac{1}{2 \gamma} - \frac{1}{\gamma - \sigma^2 V_t + \frac{1}{\gamma - \sigma^2 V_t} + \hat{Q}_2 \left(\frac{1}{V_t}\right)^2 - \left(\hat{Q}_2 + \hat{Q}_1 \frac{1}{V_t}\right)^2 + \hat{Q}_2 \frac{1}{V_t}^2}
\]

\[
+ \frac{(1 - \gamma)}{\gamma} \left[\frac{1}{\gamma - \sigma^2 V_t + \frac{1}{\gamma - \sigma^2 V_t} + \hat{Q}_2 \left(\frac{1}{V_t}\right)^2 - \left(\hat{Q}_2 + \hat{Q}_1 \frac{1}{V_t}\right)^2 + \hat{Q}_2 \frac{1}{V_t}^2}\right] .
\]

(21)

Rearranging the above equation, we have the following three equations for \(\hat{Q}_2 \), \(\hat{Q}_1 \), and \(\hat{Q}_0 \),

\[
\left[\frac{1}{2 \gamma - 1 - \phi} - \frac{(1 - \gamma)^2}{\gamma - \sigma^2 V_t + \frac{1}{\gamma - \sigma^2 V_t} + \hat{Q}_2 \left(\frac{1}{V_t}\right)^2 - \left(\hat{Q}_2 + \hat{Q}_1 \frac{1}{V_t}\right)^2 + \hat{Q}_2 \frac{1}{V_t}^2}\right] \hat{Q}_2
\]

\[
\left[\frac{1}{2 \gamma - 1 - \phi} - \frac{(1 - \gamma)^2}{\gamma - \sigma^2 V_t + \frac{1}{\gamma - \sigma^2 V_t} + \hat{Q}_2 \left(\frac{1}{V_t}\right)^2 - \left(\hat{Q}_2 + \hat{Q}_1 \frac{1}{V_t}\right)^2 + \hat{Q}_2 \frac{1}{V_t}^2}\right] \hat{Q}_1
\]

\[
\left[\frac{1}{2 \gamma - 1 - \phi} - \frac{(1 - \gamma)^2}{\gamma - \sigma^2 V_t + \frac{1}{\gamma - \sigma^2 V_t} + \hat{Q}_2 \left(\frac{1}{V_t}\right)^2 - \left(\hat{Q}_2 + \hat{Q}_1 \frac{1}{V_t}\right)^2 + \hat{Q}_2 \frac{1}{V_t}^2}\right] \hat{Q}_0
\]
where \(\hat{Q}_2 \) can be solved to the quadratic equation (22), \(\hat{Q}_1 \) can be solved to the equation (23) given \(\hat{Q}_2 \), and \(\hat{Q}_0 \) can be solved to the equation (24), given \(\hat{Q}_2 \) and \(\hat{Q}_1 \).

As such, we can now get the indirect utility function and the optimal consumption rule and the optimal dynamic asset allocation strategy with capital gains tax in the stochastic environment without constraint when \(\varphi = 1 \).

The indirect utility function is
Optimal Dynamic Asset Allocation with Capital Gains Taxes and Stochastic Volatility

\[J(W_t, V_t) = I(V_t) \frac{W^{t+\tau}}{1-\gamma} = \Phi(V_t) \frac{W^{t+\tau}}{1-\gamma} \]

\[= \exp \left[\left(\frac{1-\gamma}{1-\phi} \right) \left(\hat{\gamma} + \hat{\beta} V_t + \hat{\beta} \log V_t \right) \right] \frac{W^{t+\tau}}{1-\gamma} . \]

(25)

The investor’s optimal instantaneous consumption-wealth ratio is

\[\frac{C}{W_t} = \beta^* \exp \left(-\hat{\gamma} - \hat{\beta} V_t - \hat{\beta} \log V_t \right) . \]

(26)

The optimal dynamic asset allocation strategy with capital gains tax is

\[\eta_t = \frac{1}{\gamma} \left[\frac{(\mu - r)S_t S_e (1 - \tau_e) - \lambda \sigma_t V_t S^e_t}{S^e_t + S_e^2 \tau_e - 2S_t \tau_e + \tau_e \tau_e - 2\rho(\sigma S_t, \tau - \tau, \sigma S_t, \tau)} \right] V_t \]

\[+ \left(\frac{1}{\gamma} \right) \frac{\hat{\gamma}}{1-\phi} \left(\frac{1}{1-\phi} V_t \right) \frac{(\rho \sigma S_t - \rho \tau \sigma S_t - \tau \sigma^2 S_t)}{S_t^2 + S_t^2 \tau - 2S_t \tau + \tau \tau - 2\rho(\sigma S_t, \tau - \tau, \sigma S_t, \tau)} . \]

(27)

Now we have explicitly solved the problem of the dynamic asset allocation strategy for long-horizon investors with time-varying volatility and capital gains tax. In the next section, we will provide analyses of our results.

4. Analyses of the Model Results and How Capital Gains Taxes Affect Asset Allocation with Stochastic Volatility

The optimal dynamic asset allocation strategy can be separated into two components: the myopic component, and the intertemporal hedging component. First, the dependence of the myopic component is simple. It is an affine function of the reciprocal of the time-varying volatility and decreases with the coefficient of relative risk aversion. Since volatility is time varying, the myopic component is time varying, too. In other words, the myopic component is simply linked to the after-tax risk-and-return tradeoff associated with price risk. Higher the capital gains tax rate would lead to higher delta of the real tax option (\(\tau_e \)), and this will decrease the after-tax
return, thereby decreasing the myopic component in the optimal dynamic asset allocation for the risky stock. In addition, we know that the capital gains tax system imposes a higher burden on more volatile risky stock than on less risky stock even when expected returns are the same. This paper shows this phenomenon by the vega of the real tax option. The higher the vega of the real tax option, (i.e. the higher the sensitivity of the tax burden to infinitesimal changes on the stock return volatility) accompanied by the $\tau > 0$, the higher the increase of the tax burden with respect to the increase in the stock return volatility, and the lower the after-tax return on the risky stock will be. Therefore, the investor will decrease the myopic component of the asset allocation on the risky stock.

The intertemporal hedging component of the optimal dynamic asset allocation is an affine function of the reciprocal of the time-varying volatility, with coefficient $\hat{\varphi} |_{1-\varphi}$ and $\hat{\varphi} |_{1-\varphi}$. While \hat{Q}_1 is the solution to the quadratic equation (22), \hat{Q}_2 is the solution to the equation (23) given \hat{Q}_1, and \hat{Q}_3 is the solution to the equation (24), given \hat{Q}_1 and \hat{Q}_2. When $\gamma > 1$ for the coefficient \hat{Q}_1, the equation (22) has two real roots of opposite signs according to the quadratic equation theory. And the value function J is maximized only with the solution associated with the negative root of the discriminant of the quadratic equation (22), i.e. the positive root of equation (22). It can immediately be shown that $\hat{Q}_2 |_{1-\varphi} > 0$.

Since $\hat{Q}_1 |_{1-\varphi} > 0$, the sign of the coefficient of the intertemporal hedging demand from pure changes in time-varying volatility is positive when $\gamma > 1$. We can further separate the intertemporal hedging demand into three effects. First, if we don't introduce any capital gains tax consideration, and instead the holding stock is tax-free, the intertemporal hedging component for the risky stock will consist of only the correlation effect or leverage effect ($\rho \sigma$). The intertemporal hedging component of the optimal asset allocation for risky stock without capital gains tax is affected by the instantaneous correlation between the unexpected return and changes in stochastic volatility of the risky stock (ρ). If $\rho < 0$, the unexpected return on the risky asset is low (the market situation is bad), and then the states of the market uncertainty will
be high. Since \(\frac{\hat{\phi}}{1-\phi} > 0 \) when \(\gamma > 1 \), the negative instantaneous correlation between unexpected return on the risky stock and its stochastic volatility implies the investor will have a negative intertemporal hedging demand due to changes solely in the volatility of the risky asset, which lacks the hedging ability against an increase in volatility. Similar discussions are found in Liu (2001) and Chacko and Viceira (2005). However, in our generalized model, the consideration of capital gains tax with time-varying volatility complicates the intertemporal hedging component of asset allocation for long-horizon investors.

In the previous section we assume a real tax option whose price exposure is positive \((\tau > 0) \), and volatility exposure is positive \((\tau > 0) \), without any loss of generality. From that, we show that under the leverage effect from the negative correlation between volatility of the risky stock and its price shock \((\rho < 0) \), we will have two capital gains tax effects in the intertemporal hedging component for the risky stock, the tax-option delta effect \((-\rho \tau \sigma > 0) \), and the tax-option vega effect \((-\tau \sigma^2 < 0) \). This implies that under the correlation effect --i.e. when the unexpected return on the risky stock is low (or the market situation is bad), and the market uncertainty is high-- the low unexpected return on the risky stock and the high uncertainty of the market states due to the high volatility of the risky stock will make capital gains tax play an important role in the intertemporal hedging demand due to the delta effect and the vega effect. Consequently, a conservative investor will have a positive component on the intertemporal hedging demand from the tax-option delta effect and a negative component on the intertemporal hedging demand from the tax-option vega effect. For conservative investors, if they are not subject to any capital gains tax and hold only risky stocks, they will decrease their holdings of the risky stocks via the intertemporal hedging component due to the leverage effect under high volatility accompanied by low unexpected return on the risky stocks.

However, under the leverage effect with capital gains tax, the negative intertemporal hedging component will be partially offset by the positive delta effect of the real tax option for \(0 < \tau < 1 \). The net leverage effect, which we term “the after-tax leverage effect”, on the intertemporal hedging demand from pure changes of stochastic volatility is \((1-\tau)\rho\sigma \). This component of the intertemporal hedging demand is also negative for the assumption of the negative value of the instantaneous correlation be-
between the unexpected return on the stock and its stochastic volatility (ρ). The consideration of the capital gains tax will decrease the absolute value of this component. The positive delta effect on tax option ($-\tau, \rho \sigma$) is intuitive because under the leverage effect, i.e. the low unexpected returns on the risky stock with the high return volatility on the risky stock, the increase of the holding of the stock will not increase tax burden, in a bad market situation. Therefore, the capital gains tax effect will offset the leverage effect of the negative intertemporal hedging demand.

However, due to the bad market accompanied by high volatility under the leverage effect, a conservative investor will have an negative vega effect of the tax option on the intertemporal hedging demand generated by pure changes of stochastic volatility ($-\tau, \sigma^2$) for $\tau > 0$. This results from the capital gains tax imposing a high burden on more volatile investments than on less volatile investment. Further, the taxation are likely to cause investors to reallocate their capital from risky stocks to riskless bonds. Therefore, we will have an extra negative intertemporal hedging demand from the vega effect of tax option.

5. Conclusions

Although various countries have their own tax laws, the tax laws in many countries usually create a situation where the taxpayer’s payoff from a course of action resembles the payoff from writing a call option to the government. As a result of the call-like nature of the investor’s tax pay-off function, investors have an incentive to reduce their expected tax burdens. This incentive will result in the adjustment of optimal dynamic asset allocation strategies and consumption rule. The purpose of this paper is applying the real option in the tax law to investigate the effect of taxation of capital gains on the optimal dynamic consumption and portfolio choice with stochastic volatility. Our research contributes to the literature on optimal asset allocation by exploring precisely how capital gains taxes affect asset allocation with stochastic volatility.

The optimal dynamic asset allocation strategy can be separated into two components: the myopic component, and the intertemporal hedging component. The myopic component is simply linked to the after-tax risk-and-return tradeoff associated with price risk. We can further separate the intertemporal hedging demand explicitly. For
a conservative investor, if she doesn’t impose any tax and holds only the risky stock, she will decrease the holdings of the risky stock via the intertemporal hedging component due to the leverage effect under high volatility accompanied by low unexpected return on the risky stock. However, under the leverage effect with capital gains tax, the negative intertemporal hedging component will be partially offset by the positive delta effect of the real tax option. The net leverage effect, which we call “the after-tax leverage effect” on the intertemporal hedging demand coming from pure changes of stochastic volatility is also negative under the assumption of the negative value of the instantaneous correlation between the unexpected return on the stock and its stochastic volatility.

In this paper, we show that a bad market accompanied by high volatility under the leverage effect, a conservative investor will have a negative vega effect of the tax option on the intertemporal hedging demand coming from pure changes of stochastic volatility. This result is that when the capital gains tax imposes a high burden on more volatile investments than on less volatile investments with the same expected return, this will tend to cause investors to reallocate their capital away from risky stocks and toward riskless bonds. Therefore, we will have an extra negative intertemporal hedging demand from the vega effect of tax option.
References

Optimal Dynamic Asset Allocation with Capital Gains Taxes and Stochastic Volatility

Appendix

The derivation of the special case for optimal dynamic asset allocation strategy with capital gains tax and time-varying volatility when \(\varphi = 1 \)

We conjecture there exists a solution of the functional form \(J(W_t, V_t) = I(V_t) \frac{W_{it} - \gamma}{1 - \gamma} \) when \(\varphi = 1 \), and substitute it into equation (12).

\[
0 = \left(\log \beta - \frac{1}{1 - \gamma} \log I - 1 \right) \beta I + r I + I_I \left(\frac{1}{1 - \gamma} \right) \kappa (\theta - V_t)
\]

\[
+ \frac{1}{2} \frac{1}{\gamma} \frac{1}{(\mu - r) S_t (1 - \tau_t) - \lambda \sigma_t V_t} \left[\sigma_t^2 \gamma^2 (\rho S_t - \rho S_{\tau_t} - \sigma_t) V_t^2 \
- \frac{1}{2} \sigma_t^2 (\rho S_t - \rho S_{\tau_t} - \sigma_t) V_t \right] + \frac{1}{2} I_{VV} \left[(\mu - r) S_t (1 - \tau_t) - \lambda \sigma_t V_t \sigma_t (\rho S_t - \rho S_{\tau_t} - \sigma_t) \right].
\]

(A1)

The above ordinary differential equation has a solution of the form \(I = \exp \left(Q_t + Q_t V_t, + Q_t \log V_t \right) \), so (A1) can be expressed as

\[
0 = \left(\log \beta - \frac{1}{1 - \gamma} \left[Q_t + Q_t V_t, + Q_t \left(\log \theta + \frac{1}{\theta} - 1 \right) \right] - 1 \right) \beta + r + \frac{1}{1 - \gamma} \kappa (Q_t \theta - Q_t V_t, + \frac{Q_t}{V_t} \theta - Q_t)
\]

\[
+ \frac{1}{2} \frac{1}{\gamma} \frac{1}{(\mu - r) S_t (1 - \tau_t) - \lambda \sigma_t V_t} \left[\sigma_t^2 (\rho S_t - \rho S_{\tau_t} - \sigma_t) \right] (Q_t V_t^2 + 2 Q_t) \frac{Q_t}{V_t}
\]

\[
+ \frac{1}{2} \frac{1}{\gamma} \frac{1}{(\mu - r) S_t (1 - \tau_t) - \lambda \sigma_t V_t} \left[\sigma_t^2 (\rho S_t - \rho S_{\tau_t} - \sigma_t) \right] (Q_t V_t^2 + 2 Q_t) \frac{Q_t}{V_t}
\]

\[
\left(Q_t + \frac{Q_t}{V_t} \right) \left[(\mu - r) S_t (1 - \tau_t) - \lambda \sigma_t V_t \sigma_t (\rho S_t - \rho S_{\tau_t} - \sigma_t) \right].
\]

97
Rearranging the above equation, we have the following three equations for Q_1, Q_2 and Q_3:

$$
\begin{align*}
Q_1 &= \frac{1}{\gamma} \left[\frac{1}{1-\gamma} \left\{ \sigma^2 (\rho S_t - \rho S_{t-1}) \right\} - \frac{1}{1-\gamma} \left\{ \frac{1}{\gamma} \left[1 - \gamma \right] \right\} \right] Q_2^2 \\
Q_2 &= \frac{1}{\gamma} \left[\frac{1}{1-\gamma} \left\{ \frac{1}{\gamma} \right\} \right] S_t^2 S_{t-1}^2 - 2S_t^2 S_{t-1}^2 + \sigma^2 \left(\gamma S_t^2 + S_{t-1}^2 \right) + 2\rho (\sigma S_t, \tau, \sigma S_{t-1}) \\
Q_3 &= \frac{1}{\gamma} \left[\frac{1}{1-\gamma} \left\{ \frac{1}{\gamma} \right\} \right] S_t^2 S_{t-1}^2 - 2S_t^2 S_{t-1}^2 + \sigma^2 \left(\gamma S_t^2 + S_{t-1}^2 \right) + 2\rho (\sigma S_t, \tau, \sigma S_{t-1})
\end{align*}
$$

(A2)
From equation (A3), we have:

\[Q_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \]

(A6)

where

\[a = \frac{1}{2} \sigma^2 \left(\frac{1}{1-\gamma} + \frac{1}{\gamma} \right) S_t^2 + S_t^2 r_t^2 - 2 S_t^2 \tau_t + \sigma^2 \tau_t^2 - 2 \rho (\sigma S_t \tau_t - \tau_t \sigma S_t) \]

\[b = \frac{1}{1-\gamma} \kappa \theta - \frac{1}{2} \left(\frac{1}{1-\gamma} \right) \sigma^2 + \frac{1}{\gamma} \left((\mu - r) S_t (1 - \tau_t) \right) \sigma (\rho S_t - \rho S_t \tau_t - \tau_t \sigma S_t) \]

\[c = \frac{1}{2} \left(\frac{1}{1-\gamma} \right) \sigma^2 S_t^2 + S_t^2 r_t^2 - 2 S_t^2 \tau_t + \sigma^2 \tau_t^2 - 2 \rho (\sigma S_t \tau_t - \tau_t \sigma S_t) \]

From this result, we can get the indirect utility function and the optimal consumption rule and optimal dynamic asset allocation strategy when \(\varphi = 1 \).